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Abstract—Simulink has been widely used in embedded soft-
ware development, which supports simulation to validate the
correctness of models. However, as the scale and complexity of
models in industrial applications grow, it is time-consuming for
the simulation engine of Simulink to achieve high coverage and
detect potential errors, especially accumulative errors.

In this paper, we propose ACCSIM, an accelerating model
simulation method for Simulink models via code generation.
ACCSIM generates simulation functionality code for Simulink
models through simulation oriented instrumentation, including
runtime data collection, data diagnosis, and state-aware accel-
eration. The final simulation code is constructed by composing
all the instrumentation code with actor code generated from a
predefined template library and integrating test cases import.
After compiling and executing the code, ACCSIM generates
simulation results including coverage and diagnostic information.
We implemented ACCSIM and evaluated it on several benchmark
Simulink models. Compared to Simulink’s simulation engine,
ACCSIM shows a 215.3× improvement in simulation efficiency,
significantly reduces the time required for detecting errors. Fur-
thermore, through the state-aware acceleration method, ACCSIM
yielded an additional 2.8× speedup. ACCSIM also achieved
greater coverage within equivalent time.

Index Terms—Model-driven design, model simulation, code
generation

I. INTRODUCTION

Model-Driven Development (MDD) has been widely used in
industrial applications [2]–[6], which uses modeling tools like
Simulink [7] and open-source Ptolemy-II [8]–[10] to facilitate
software development. It is prevalent not only in traditional
embedded software design [11]–[13], but also increasingly
adopted in emerging areas like the Internet of Things, artificial
intelligence, and cloud computing for system design [14]–[18].
MDD involves the processes of modeling, simulation, testing,
and code generation to transform high-level abstract data flow
models into executable code, thereby enhancing development
efficiency and ensuring system consistency and reliability.

Although MDD offers these significant advantages, it does
not eliminate errors within the models. Firstly, errors intro-
duced by developers during the modeling process may lead
to inconsistencies between the model’s functionality and the
requirements. Secondly, the complexity of large industrial
models may make it challenging for developers to fully grasp
all the intricate details of the system, thereby potentially
overlooking errors or boundary conditions, such as overflow
errors in model computation actors or accumulation errors
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resulting from prolonged execution [19], [20]. Since the indus-
trial applications of MDD are often safety-critical, including
those in industrial, vehicle, and satellite control systems, even
occasional errors in these scenarios could lead to severe acci-
dents and substantial losses [21]–[23]. Therefore, eliminating
potential errors in models is crucial.

Model simulation stands as one of the primary approaches
to identify and resolve errors within models. The simulation
engine of Simulink (SSE) allows for thorough verification and
validation of models. It can simulate the dynamic behaviors
of the target system step-by-step to identify logical errors,
computational errors, and incorrect assumptions within the
model. Moreover, it provides runtime diagnostics to monitor
the constructed model and detect potential errors. For enhanc-
ing simulation efficiency, SSE supports fast simulation modes,
which optimizes simulation performance but restricts the ca-
pability of runtime diagnostics and information collection.
Motivation. However, SSE still falls in short to detect long-
term execution errors efficiently due to its interpreted exe-
cution method, which often emerge after extended periods of
operation. Such errors, when undetected, can lead to gradually
escalating inaccuracies or system failures, potentially causing
significant disruptions or damage. For example, consider the
sample model shown in Figure 1. This model essentially
begins by evaluating the input data; if the data does not
meet the specified condition, the output maintains 0. If the
conditions are met, the model performs an accumulation op-
eration on the two inputs, subsequently combining the results
to produce output. This process leads to an integer overflow
error occurring at the Sum actor in yellow.

Fig. 1. A sample model extracted from a large real world model, which will
overflow at the highlighted Sum actor after long time simulation.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2025.3546879

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on May 12,2025 at 06:02:58 UTC from IEEE Xplore.  Restrictions apply. 



2

We used a randomly generated sequence of positive integers
as input to simulate the model. Using SSE, it takes 217.58s to
detect the overflow error. However, when we manually write
the responsible code in C++ for this model, this error can be
identified in just 0.43s. This represents a speed improvement of
over 500× compared to SSE. The discrepancy in performance
arises from Simulink’s utilization of an interpreted execution
method for simulation, which includes data type resolution,
dynamic resolution of actor parameters, and dynamic schedul-
ing of actors [7]. Hence, translating the model into efficient
code with necessary runtime detection can substantially de-
crease the time required for simulation. Additionally, from
the model structure in Figure 1, we can observe that the
accumulation operation only occurs when Inport_A % 3
= 0, while other two-thirds (the else actor) computation being
duplicate. By skipping these duplicate simulation loops, we
could achieve an additional threefold increase in simulation
speed. To accelerate model simulation in Simulink through
code generation [24], we face the following three challenges.
Challenge 1: Identifying Essential Simulation Data. The
initial hurdle is to pinpoint the indispensable data required for
simulation within the Simulink model. Although the model
encompasses a rich reservoir of information, not all of it is
pertinent for simulation purposes. Our primary focus revolves
around discerning the actor type and its corresponding operator
for comprehensive coverage analysis. Additionally, it is imper-
ative to integrate input and output signals into the diagnostic
process seamlessly. Thus, formulating a robust methodology
for extracting these simulation-relevant details from the model
emerges as a pivotal task.
Challenge 2: Analyzing Acquired Data. The subsequent
challenge entails delving into the acquired data. The effective-
ness of comprehensive simulation functionalities, such as error
diagnosis and coverage statistics, hinges on the meticulous
analysis of the amassed data. However, the diverse array
of actor types and their corresponding operators precipitates
discrepancies in the methodologies deployed for error diagno-
sis. Moreover, grappling with the intricacies of implementing
coverage statistics at model level poses a formidable challenge.
Consequently, a streamlined approach is imperative to delin-
eate the implementation of these two functionalities distinctly.
Furthermore, users often harbor specific requisites concerning
error diagnosis, necessitating the development of a framework
conducive to customizing diagnostic methodologies.
Challenge3: Skipping Duplicate Iteration. In practical in-
dustrial scenarios, where system states and inputs for models
are often restricted, employing a state-aware approach can
expedite simulations by avoiding redundant execution of iden-
tical simulation steps. The key challenge lies in discerning
which executions can be safely bypassed. This necessitates
real-time monitoring and analysis of the model’s state, coupled
with the design of efficient decision-making mechanisms to
ascertain the necessity of executing the current simulation
loop. However, achieving this objective without compromising
accuracy and reliability poses a non-trivial task. It requires a
thorough consideration of multiple factors and skillful man-
agement of the complexities that arise from the dynamic nature
of the model and variations in input parameters. Furthermore,

the introduction of this method will inevitably incur significant
overhead, necessitating the use of sophisticated algorithms to
minimize it as much as possible.

To address the challenges mentioned above, we introduce
ACCSIM, which accelerates model simulation for Simulink by
translating the model into responsible code. ACCSIM primar-
ily comprises three key steps. Firstly, ACCSIM parses the input
Simulink model for preparation, collecting the critical informa-
tion, such as the model structure, actors, and their execution
order. Secondly, for each actor requiring data collection or
diagnosis, ACCSIM generates corresponding instrument code.
Additionally, ACCSIM offers optional state-aware acceleration
approach, which is an optimization strategy based on model
states, aimed at enhancing simulation efficiency. By precisely
tracking and identifying model states, this method can skip
redundant simulation loops, thereby reducing unnecessary
computational overhead. After that, the actors generated in the
preprocessing stage are transformed into a code referencing ac-
tor template library, and then combined with the instrumented
sections to form the final simulation code. Finally, we compile
and execute all the generated code with imported test cases to
obtain diagnostic results and coverage information.

We have implemented ACCSIM and evaluated it on several
benchmark Simulink models. Experimental results show that
compared to SSE and its two fast simulation modes, the
acceleration ratio of ACCSIM reached 215.3×, 76.32×, and
19.8×, respectively. Besides, acceleration through the state-
aware method yielded an additional 2.8× speedup. Since SSE
cannot achieve error diagnosis and coverage collection in fast
simulation modes, we solely compared these two functionali-
ties of ACCSIM to SSE. The coverage attained by ACCSIM
within equivalent time achieves substantial improvements.
Furthermore, ACCSIM makes remarkable progress reducing
the error detection time.

To sum up, our main contributions are as follows:
• We propose ACCSIM, an accelerating model simulation

method for Simulink models via code generation.
• We introduce a state-aware simulation acceleration

method to boost simulation performance by skipping
duplicate simulation loops.

• We implement ACCSIM and evaluate its effectiveness
and performance on benchmarks. The results demonstrate
that ACCSIM outperforms the state-of-the-art simulation
tool SSE by 215.3×, with better error diagnose capacity.

II. BACKGROUND

A. Model-Driven Design

Model-Driven Design (MDD) [25] is a software develop-
ment approach that employs data flow models as its primary
development semantics to enhance software development effi-
ciency, reduce development costs, and improve software qual-
ity. Its core concept lies in utilizing formal models to describe
the structure and behavior of systems, enabling developers
to understand and analyze systems more intuitively, thereby
accelerating development speed, reducing development costs,
and enhancing software quality. The central idea of MDD is to
place models at the center of software development, achieving
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comprehensive automation from requirements analysis to sys-
tem implementation. By establishing clear mappings between
models and code, corresponding code auto-generation can be
realized, reducing manual coding effort, lowering error rates,
and improving production efficiency. At present, the main
development environments used for MDD include Simulink
in MATLAB and the open-source Ptolemy-II framework.

B. Embedded System Execution and Simulation

In embedded systems, the main loop typically serves as
the core of the control software, responsible for periodically
handling task scheduling, sensor readings, data processing, and
control command execution. The execution time of the main
loop is influenced by factors such as the hardware platform,
software algorithms, and external environmental conditions.
Consequently, the corresponding real-world execution time
needs to be determined based on the specific application sce-
nario of the system, considering factors like external interrupts
and resource contention.

To evaluate the functionality and performance of embed-
ded systems, simulation methods are commonly employed to
model their behavior [26], [27]. Simulation loops simulate the
system’s time progression using specialized tools, with each
simulation step representing a discrete time interval of the
system’s state. The granularity of the simulation determines the
time precision of each simulation update. The corresponding
real-world time for the simulation is calculated based on the
specific characteristics of the system and its environment.
For instance, factors such as hardware performance, resource
availability, and the frequency of real-time parameter acquisi-
tion influence this calculation, highlighting the importance of
tailoring simulations to the application context.

C. Simulink Simulation Engine

The simulation engine (SSE) is a core part of Simulink,
which enables users to execute and observe model behavior
over time. It evaluates the target system step-by-step to detect
logical errors, flawed assumptions, and unintended model
behaviors. It is highly accurate and allows for interactive
parameter tuning but can be slower for complex models.
For simulation efficiency, SSE supports two kinds of faster
modes: Accelerator mode (SSEac) and Rapid Accelerator
mode (SSErac). SSEac accelerates execution by compiling the
model into an intermediate MEX file, whereas SSErac entirely
precompiles the model before simulation, greatly enhancing

processing speed. However, these modes face limitations:
frequent synchronization with Simulink and data transfer re-
quirements may hinder speed, and their reduced error detection
capabilities could compromise model accuracy and reliability.
For instance, SSErac can neither detect potential errors like
overflow and downcast, nor collect coverage information.

D. Coverage Metrics

Coverage metrics help developers to gain deeper under-
standing of models’ status and validate that test cases are
comprehensive enough to cover different parts of models.
Simulink provides four main coverage metrics [28], involving
actor coverage, condition coverage, decision coverage, and
modified condition/decision coverage (MC/DC).

Actor Coverage indicates whether various actors in the
model have been executed.

Condition Coverage measures the executing rate beyond
all the branches in the model. Conditional expressions appear
in branching actors, e.g., if, switch, which determine different
paths of simulation.

Decision Coverage determines the percentage of the total
number of decision outcomes the code executes during simu-
lation. Decision points are typically associated with the actors
including Boolean statements, representing different possible
outcome values.

Modified Condition/Decision Coverage (MC/DC) ana-
lyzes whether the conditions within a decision independently
affect the decision outcome during execution.

III. DESIGN

Figure 2 shows an overview of ACCSIM, involving three
main steps. The first step is model preprocessing, aiming at
obtaining actors’ information and their execution order from
the input Simulink model. It first parses the input model to
retrieve information about all the actors, and then it analyzes
the execution order of all actors using a data flow labeling
method [29]. The second step is simulation oriented instru-
mentation, focusing on generating instrumentation code for
data collection and diagnostic purposes. Based on the parsed
actor information, the data collection module generates code to
collect runtime data of actors, involving coverage information.
The data diagnose module performs diagnostic instrumentation
through predefined template library. The state-aware accelera-
tion module is responsible for generating instrumentation code,
which collects system state, input, and output information
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Fig. 2. An overview of the ACCSIM framework. The Model Preprocess step parses the input Simulink model to collect information about the model’s
structure, actors and their execution order. The Simulation Oriented Instrumentation step generates instrument code for data collection, data diagnosis and
state-aware acceleration. The Simulation Code Synthesis step combines actor code with the instrumented sections to produce the final simulation code.
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during runtime, and based on this information, decides whether
to execute the simulation process for the current input or
directly update the model state and output information, and
skip the current input. Moreover, the custom signal diagnosis
sub-module allows for instrumenting user-defined diagnosis
logic dynamically. The last step is simulation code synthesis,
forming the final simulation code by combining actor code
with their instrumented code, as well as the test cases import-
ing code. Note that the actor code is automatically generated
based on our predefined code template library.

A. Model Preprocessing

This step takes a Simulink model file as input, and extracts
information and the execution order of all the actors to
support simulation oriented instrumentation and model code
generation in subsequent steps. The necessity for utilizing two
modules arises from the characteristics of the model files.
Simulink stores a model file in two main parts, involving
actors and relationships. The former part contains only the
fundamental information of the model, encompassing the
actor’s name, type, calculation operator, and the quantity of
input/output signals. Note that in this part, all the actors are
stored separately, with both the I/O names and data types
recorded as default values with no signal connections. The
relationship part stores all data flow directions, connecting I/O
signals in the model.

To effectively address the challenge of identifying
simulation-relevant details, it is essential to establish a clear
definition of these details. Each simulation feature corresponds
to specific model-related information, as summarized in Table
I. A comprehensive explanation of how this information fa-
cilitates various simulation features will be provided in the
subsequent sections.

TABLE I
SIMULATION FEATURES AND THEIR RELEVANT MODEL INFORMATION

Model
Information

Simulation Features
Signal

Monitor
Data

Diagnosis
Coverage
Statistics

State-Aware
Acceleration

Actor Name ✓ ✓ ✓ -
Actor Type - ✓ ✓ -
Operator - ✓ - -
I/O Signal Name ✓ ✓ - -
I/O Data Type ✓ ✓ - -
Global Variable - - - ✓

Model Hyperparameter - - - ✓

Execution Order - ✓ ✓ -

Given that Simulink model files are stored in XML format,
the model parser module leverages the TinyXML library to
thoroughly interpret the actor part. This process extracts funda-
mental information for each actor, including the actor’s name,
type, associated operator, and default I/O signal specifications.
The schedule convert module further processes the relationship
part of the model by representing the data flow as a directed
computation graph. In this graph, nodes represent actors, and
edges denote signal connections. This representation enables
data flow analysis to establish precise interconnections and
employs topological sorting to determine the execution order
of all actors systematically.

B. Simulation Oriented Instrumentation

In order to ensure the correctness of the model, simulation
needs to detect whether errors occur in calculation actors.
Additionally, to evaluate the adequacy of the testing process,
it is necessary to collect coverage data in the simulation
process. Since ACCSIM carries out code-based simulation,
code instrumentation is apparently a more suitable method to
achieve these two functionalities.

Algorithm 1: Actor Code Instrumentation
Input: actorInfo: Information of all actors

executionOrder : execution order of all actors
collectList : list of actors need information collection
diagnoseList : list of actors need diagnosis

Output: actorCode: Instrumented actor code
1 for actor in executionOrder do
2 code = genCodeFromTemp(actorInfo[actor])
3 diagCode = emptyString
4 code+ = genActorCov(actorInfo[actor])
5 if actorInfo[actor].isBranchActor then
6 code = instConditionCov(code)

7 if actorInfo[actor].containBooleanLogic then
8 code = instDecisionCov(code)

9 if actorInfo[actor].isCombinationCondition then
10 code = instMCDCCov(code)

11 if actor in collectList then
12 code+ = generateCollectFunc(actorInfo[actor])

13 if actor in diagnoseList then
14 code+ = generateDiagnoseFunc(actorInfo[actor])
15 diagCode = genDiagnoseImpl(actorInfo[actor])

16 actorCode[actor].code = code
17 actorCode[actor].diagCode = diagCode

18 return actorCode

The detailed process of code instrumentation is shown in
Algorithm 1. The main idea of this algorithm is to instrument
data collection and diagnosis code for all actors in the model.
The algorithm initially traverses all actors in the order of
execution, generating basic actor code for each actor based on
the code template library (line 2). Afterward, the algorithm
carries out relevant instrumentation operations in accordance
with the characteristics specified in the actor information (lines
5-15). Note that the instrumented code here just involves the
function calls at specific locations, while the actual imple-
mentation of these functions is defined elsewhere, typically in
other files or libraries. Actor information collection functions
share standardized content that can be implemented using
predefined methods, as well as the coverage collection func-
tions. However, the specific content of diagnostic functions
varies significantly based on the actor’s type and operator, thus
requiring a dynamically generated approach (line 15).

1) Data Collection:
Actor Info Collection. The main purpose of collecting

actor information is to perform calculation diagnosis and
signal monitor during simulation. In order to detect potential
errors in calculation actors, it is essential to gather runtime
data from each calculation actor in the model. Actor’s type
information is certainly required to discriminate calculation
actors from the model. Additionally, diagnosis types vary
depending on the type-operator combination of actors, making
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their operators necessary to be collected. Furthermore, the
names and types of actors’ input/output parameters are equally
needful, since both calculation diagnosis and signal monitor
require the runtime values of these parameters. Finally, to
uniquely identify a specific actor within the input Simulink
model and its gathered information, this module collects the
actor’s path as the index key, which is composed of the model
file name, subsystem name, and the actor’s own name, for
example, MODEL SUBSYSTEM ADD2 .

Figure 3 illustrates the declaration of an instrumented signal
monitor function. It records the output value of the actor with
three parameters, including the path of the outport, the address
of its value, the corresponding data type, and the data length.
All collected output values will be stored in the outputData
object, which serves as a repository for result output at the
conclusion of the simulation.

1 void diagnose_Model_Minus(i32 out, i32 in1, i32 in2) {
2 if((in1 > 0 && in2 < 0 && out < 0) || (in1 < 0 && in2 > 0 && out > 0))
3 printf("WARRING: Wrap on overflow occur on Model_Minus!\n");
4 if(sizeof(out) < sizeof(in1) || sizeof(out) < sizeof(in2))
5 printf("WARRING: Downcast may exist on Model_Minus!\n");
6 }

1 void outputCollect(string path, char* dataAddr, string dataType) {
2   outputData* OD = new outputData();
3 OD->path = path;
4 OD->dataType = dataType;
5 memcpy(OD->data, dataAddr, sizeof(dataType));
6 ... 
7 }

Fig. 3. An instrumented function for signal monitor.

Coverage Collection. A primary purpose of simulation is to
assess the coverage of models. Coverage metrics help develop-
ers to gain deeper understanding of models’ status and validate
that test cases are comprehensive enough to cover different
parts of models. Simulink provides four main coverage metrics
[28], involving actor coverage, condition coverage, decision
coverage, and modified condition/decision coverage (MC/DC).
As a code-based simulation tool, ACCSIM utilizes a bitmap
for each metric to record runtime coverage information, which
is used for coverage statistics during simulation.

ACCSIM attaches the instrumentation method to gather
coverage information corresponding to the four coverage
metrics: (a) For actor coverage, we add coverage statis-
tics collection code at the end of each actor, for example,
actorBitmap[actorID]=1. (b) For condition coverage,
our method inserts coverage collection code into all executable
branches, e.g., if, switch. (c) For decision coverage, we instru-
ment all possible values of all the Boolean statements to collect
this metric. (d) For MC/DC, we place the instrumentation
code to gather the number of conditions evaluated to all
possible outcomes that impact the output of a decision. After
simulation, we divide the collected values by the total number
of conditions within all decisions to obtain MC/DC.

2) Data Diagnose:
Calculation Diagnose. Another primary purpose of sim-

ulation is to diagnose models for discovering various types
of potential errors. Such errors are often related to computa-
tional issues that arise from the model’s structure or inputs,
normally appearing in calculation actors. ACCSIM is capable
of diagnosing all types of calculation errors supported by SSE
in default, including warp on overflow, array out of bounds,
division by zero, precision loss, etc. For different error types,
we have developed a distinct diagnostic code and packaged
them into corresponding template library. For the same error

type, the instrumented diagnostic code is almost the same.
Note that, the type and number of diagnoses vary depending
on the actor type and its operator. For example, a ”Product”
actor with the ”/” operator needs to diagnose division by zero
errors. Conversely, when this actor uses the ”*” operator, this
diagnosing becomes unnecessary.

Figure 4 shows a part of the declaration of a diagnostic
function, which exams a Sum type actor named ”Minus” has
the operator ”-” with its runtime input/output values. Line 2
represents the diagnostic logic of detecting warp on overflow,
followed by the parameter downcast diagnosis in line 4. When
an error is triggered, corresponding diagnostic information will
be outputted (line 3 and 5).

1 void diagnose_Model_Minus(i32 out, i32 in1, i32 in2) {
2 if((in1 > 0 && in2 < 0 && out < 0) || (in1 < 0 && in2 > 0 && out > 0))
3 printf("WARRING: Wrap on overflow occur on Model_Minus!\n");
4 if(sizeof(out) < sizeof(in1) || sizeof(out) < sizeof(in2))
5 printf("WARRING: Downcast may exist on Model_Minus!\n");
6 ...
7 }

1 void outputCollect(string path, char* dataAddr, string dataType) {
2   outputData* OD = new outputData();
3 OD->path = path;
4 OD->dataType = dataType;
5 memcpy(OD->data, dataAddr, sizeof(dataType));
6 ... 
7 }

Fig. 4. A generated diagnostic function for a Minus actor.

Custom Signal Diagnose. Sometimes users want to check
whether the input/output of a certain actor meets their expec-
tations, but a deviation from expectations does not necessarily
indicate an error. In such cases, the template-based diagnosis
method provided by ACCSIM may not be effectively suited
to handle this situation. Since then, ACCSIM allows users to
customize signal diagnosis, implementing their own diagnostic
logic by defining callback functions. For example, detecting
sudden signal changes, monitoring the output value of a
specified actor, etc.

3) State-Aware Acceleration:
In the process of simulating real industrial models using

ACCSIM, we noticed that many steps in the model simulation
process can be skipped without affecting the simulation results.
For example, Figure 5 presents a material transfer robotic
arm control model extracted from a real industrial system.
It contains three inputs: the source port, the destination port,
and the amount of materials. The current three-dimensional
spatial position of the robotic arm is recorded in the global
variables Position X, Position Y, and Position Z. The output
of the model consists of the rotational angles of the motors
controlling three directions of the robotic arm, as well as the
opening angle of its gripper. Whenever an input arrives, the
model first calculates the displacements of the robotic arm in
the three directions based on the current position recorded in
the global variables and the material source port information
from the input. After grabbing the material from the input
port, the model calculates the displacements of the robotic
arm in the three directions based on the destination port
information, controlling the robotic arm to move the material
to the output port. Finally, based on the amount of input
materials, it determines the opening angle of its gripper. After
completion, the new position of the robotic arm is recorded in
the global variables Position X, Position Y, and Position Z.
In this process, the speed of the robotic arm’s movement is
determined by the hyper-parameters in the configuration file.
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Fig. 5. A material transfer robotic arm control model extracted from a real
industrial system.

In the real material transfer system, the number of material
input and output ports is limited, and the robotic arm only
stops at the material input and output ports, leading to its
limited system state. If, during the simulation execution, once
the displacement information of the robotic arm from input
port A to output port B is calculated, it is recorded in a
transition table, the next time it goes from A to B, there is
no need to recalculate the displacement information, which
will further improve the simulation speed. Based on this
observation, we propose state-aware simulation acceleration.

The adoption of state-aware simulation acceleration is feasi-
ble due to the inherent characteristics of real industrial control
models, especially those with limited system states, in which
the behavior of the system is constrained by the limited
range of inputs and possible states. Thus, during simulation,
changes in the system state can be dynamically recorded and
corresponded with inputs and outputs. This record facilitates
the effective identification of recurring system states and inputs
in subsequent simulation steps. Therefore, if the current system
state and input match those previously recorded, there is no
need to re-execute that simulation step. The system can transit
directly to the next state and produce the corresponding output.

To implement state-aware simulation acceleration, it is
crucial to first delineate the constituents of the system state
within a Simulink model, as well as system input and output.
To enhance clarity in the following descriptions, we formally
define them as follows:

Definition 1: System State SS = {P1, ..., Pm, G1, ..., Gn},
where Pj (1 ≤ j ≤ m) represents a model hyperparameter and
each Gk (1 ≤ k ≤ n) represents a global variable. Throughout
the simulation process, the model can be conceptualized as
a function, where each simulation step equates to executing
this function. Ideally, the behavior of a function should be
deterministic, meaning the same inputs yield the same outputs.
However, if the function’s internal dynamics are contingent
upon external variables, it may affect its behavior. In the
context of a model, these external variables consist of model
parameters and global variables.

Definition 2: Test Case TC = {I1, I2, ..., In}, denotes the
numerical values assigned to all input ports of the system,
where each Ij (1 ≤ j ≤ n) corresponds to a specific input port.
A test case embodies a distinct combination of input values

applied to the model during simulation, delineating a particular
scenario or condition for evaluating the model’s behavior. It’s
noteworthy that one TC stands for the test case of a single
simulation step.

Definition 3: System Output SO = {O1, ..., On, D}, where
each Oj (1 ≤ j ≤ n) represents one of the system’s output port
value, and D represents the diagnostic information. System
outputs consist of the observed values or responses from the
model’s output ports, including any diagnostic information
generated during simulation to aid in analysis and trou-
bleshooting. As the skipped simulation executions are identical
to those previously performed, the outputs and diagnostic
information must be recorded for subsequent use. However,
since repeated executions do not alter the coverage rate, SO
does not need to include coverage information.

State & I/O Collection. When implementing state-aware
simulation acceleration, we first need to identify and collect
the model parameters and global variables that constitute
the system state. Model hyperparameters are typically fixed
configuration values, while global variables are quantities that
change during the simulation process. Together, they determine
the state of the model system at any given time. We need to
extract and record the values of all these hyperparameters and
variables as part of the system state SS(P,G).

At the same time, we need to obtain the values of the
model’s input ports as test case inputs TC(I1, I2, ...). The
input port values represent the input data of the model from
external systems during runtime. Together with the changes
in the internal state, they determine the execution behavior of
the model. Therefore, at the beginning of each simulation step,
the corresponding input values need to be retrieved from the
provided test cases as the input data for the current step.

The collected system state SS and input TC will be used to
determine whether the current simulation step can be skipped.
In the subsequent state transition process, we will check if
there are any previously recorded state transition entries that
match the current state SS and input TC. If a match is found,
the execution of the current step can be skipped directly,
thereby accelerating the simulation. Otherwise, the current step
needs to be executed, and the newly generated state transition
entry will be recorded for subsequent use.
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Fig. 6. State transition hash table.

System State Transition. In the design of State-Aware
Acceleration, the System State Transition plays a crucial role.
As illustrated in Figure 6, ACCSIM employs a two-level hash
table data structure to store and retrieve information related
to system state transitions. This structure consists of a system
state table and a transition table. Each item of the first-level
system state table has two fields, i.e. state and pointer,
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where the state field stores a SS and the pointer field
records the pointer to its second-level transition table. The
transition table uses TC as keys, with corresponding values
being SO and its next SS pointer to the system state table.

Additionally, the system transition hash table maintains
a global pointer to the system state table, pointing the
current SS. This two-level hash table structure enables
efficient storage and retrieval of system state transition
information. The first-level system state table rapidly locates
the second-level input transition table associated with the
current SS, while the second-level input transition table stores
and retrieves the SO and next SS pointer corresponding
to the (SS, TC) pair. In the simulation startup phase,
it is necessary to initialize the System State Transition
Hash Table. First, obtain the system’s initial SSinit, store it
into SystemStateTable[hash(SSinit)].state, and
set SystemStateTable[hash(SSinit)].pointer
as NULL. And then set the current SS pointer at
SystemStateTable[hash(SSinit)].
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Fig. 7. The workflow of model simulation with state-aware method.

Figure 7 illustrates the workflow of ACCSIM in ”one-step”
simulation with state-aware acceleration. While importing TC
into the simulation system, the first step involves querying
the state transition hash table to ascertain if there exists a
corresponding transition entry correlating with this TC under
current SS. If a matching record is found, the execution of
this simulation step shall be skipped. Meanwhile, the corre-
sponding output information for that simulation step (including
the new SS and SO) is retrieved from the state transition
hash table. Subsequently, the current SS within State-aware
Simulation Acceleration (Current SS ptr) are adjusted based
on the newly acquired system state (Next SS ptr), and the
outcome of this simulation step is delineated.

Conversely, in the absence of a corresponding record within
the state transition hash table, the system code proceeds with
its usual execution. Upon completion of this execution, the
newly attained SS and SO are duly updated within the state
transition hash table, thus ensuring their availability for subse-
quent use. The update process includes storing new TC and its
corresponding SO into Transition Table, inserting the new SS
into System State Table while setting Next SS ptr and Current
SS ptr at it. Through this approach, ACCSIM effectively
leverages previously computed state transition information,

avoiding redundant execution of identical simulation compu-
tations and significantly accelerating simulation process.

However, when the redundant step rate is minimal, the
state-aware acceleration approach might result in substantial
memory and time overhead. To mitigate this problem, we
implement a heuristic algorithm with two key configuration
parameters: FIRST_X_STEPS and REDUNDANT_RATE. If
the redundant step rate is below REDUNDANT_RATE (default
50%) within the first FIRST_X_STEPS (default 10,000)
simulation steps, the state-aware acceleration approach will
be automatically disabled, and the simulation progress will
return to standard code execution. Moreover, if users are
already familiar with the characteristics of the model, they
can manually configure the state-aware method by toggling
its settings, allowing further customization and optimization
for specific use cases.

C. Simulation Code Synthesis

Actor Translation. Since actors of the same type share
similar code, we predefine a code template library for com-
monly used actor types to generate the corresponding code.
Notably, the same type of actors may have different detailed
information, resulting in differences in the generated code. For
instance, the code generated for Math actor varies depending
on the operator it takes, e.g., exp or log. Consequently, ACC-
SIM needs to configure such actor information to obtain the
required code precisely. After that, according to the execution
order, the generated code of actors is synthesized to form the
mainbody code of the model.

1 int main(int argc, char* argv[]) {
2 TestCase_Init(); Model_Init(); State_Init(); 
3 // Simulation Loop of model
4 for(int step = 0; step < TOTAL_STEP; step++) {
5 int Inport_A = takeTestCase(); int Inport_B = takeTestCase();
6 int Outport;
7 if(MatchSkip(Inport_A, Inport_B, &GlobalVariables)){
8 SkipIteration(&Outport, &GlobalVariables); }
9 else{
10 Model_Exe(Inport_A, Inport_B, &Outport);
11 RecordNewExe(Inport_A, Inport_B, &Outport, &GlobalVariables); }
12 }
13 outputResult();
14 }

1 Code of main function

1 void Model_Exe(int Inport_A, int Inport_B, int* Outport) {
2 int Minus_Out;
3 //Calculate code of Sum type actor "Model.Minus" 
4 Minus_Out = Inport_A - Inport_B;
5 actorBitmap[0] = 1;
6 outputCollect("Model_Minus_out", (u8*)(&Minus_Out), "i32");
7 diagnose_Model_Minus(Minus_Out, Inport_A, Inport_B);
8   ...

2 Code of model system function

Fig. 8. A sample of final simulation code.

Simulation Code Composition. In this module, the in-
strumentation code generated by the former step is inserted
into the corresponding positions within each actor. Since the
entire execution logic of the model is composed, ACCSIM
encapsulates it within a model system function, exemplified
in the second part of Figure 8. Then ACCSIM generates a
main function to implement the simulation loop, where the
model system function (line 10) is invoked to carry out the
simulation process. The state-aware acceleration method can
be optionally inserted in to the main function.
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An illustrative example of a main function is shown in
the first part of Figure 8. In order to import test cases, the
main function initializes them (line 2) before simulation and
acquires the corresponding values for each input port during
the simulation loop (line 5), as well as initializing the state
aware acceleration method (line 2). Lines 7 to 11 illustrate the
execution process of state-aware acceleration. Moreover, the
code responsible for outputting simulation results (including
diagnostic and coverage information) is placed at the end of
the main function (line 13).

IV. IMPLEMENTATION

ACCSIM1 is implemented in C++ with 41,536 lines of code.
During the model preprocessing phase, the Simulink model,
stored in XML format, is parsed using the TinyXML library.
This approach enables the efficient extraction of actor infor-
mation, which is essential for generating both instrumentation
code and actor code. To enhance diagnostic capabilities during
simulation, we have meticulously developed a diagnostic code
template library encompassing all error types that Simulink
defaults to enable. Furthermore, specialized code template
libraries have been crafted for over fifty commonly used actors,
ensuring a streamlined and efficient process of code generation
for Simulink models.

In the State Transition Hash Table shown in Figure 6, we
use the CRC64 hashing method. The first level, namely the
System State Table, consists of a hash table with a size of
10,007. Each state in this table corresponds to a second-level
Transition Table, which has a size of 101. To handle hash
collisions, we apply the chaining method.

V. EVALUATION

A. Experiment Setup.

To evaluate ACCSIM, we conducted a comparative analysis
against SSE with 10 Simulink benchmark models. As shown
in Table II, all benchmark models are derived from industry
and deployed in embedded scenarios. All experiments were
executed in a consistent environment (Windows 11, Intel
i7-13700F CPU, 32GB RAM). The simulation code was
compiled by a C/C++ Compiler (GCC 8.1.0), employing -
O3 optimization flag. Each data point of these experiments
represents the average of five experiment runs, ensuring the
reliability and stability of the results. Our experiments are
divided into five main parts: simulation time, capability of
error diagnosis, effectiveness of coverage collection, memory
overhead and performance overhead of instrumentation. Note
that for comparison on error diagnosis and coverage collection,
we solely compared ACCSIM with SSE, as SSEac and SSErac
cannot perform these simulation functions.

Simulation Time. In this experiment, we first measured
the translation time of the benchmark models, which is the
duration required to convert the model file into its gener-
ated code. We also measured the compilation time, which
is the time taken to convert the final simulation code into
an executable file. Together, these times are combined as

1The implementation of ACCSIM and the benchmark models are available
on the following website: https://github.com/ClarkCC36/AccSiM.

TABLE II
THE DESCRIPTION OF BENCHMARK MODELS

Model Functionality #Actor #SubSystem
CPUT AutoSAR CPU task dispatch system 275 27
CSEV Charging system of electric vehicle 152 17
FMTM Factory Multi-point Temperature Monitor 276 42
LANS LAN Switch controller 570 39
LEDLC LED light controller 170 31
RAC Robotic arm controller 667 57
SPV Solar PV panel output control 131 16
TCP TCP three-way handshake protocol 330 42
TWC Train wheel speed controller 214 13
UTPC Underwater thruster power control 214 21

the initialization time of ACCSIM. In contrast, we measured
the initialization times of SSE, SSEac, and SSErac. Since
interpreted execution is used by SSE and SSEac, they do not
involve translation and compilation processes. However, both
undergo an initialization phase before entering the simulation
loop. During this phase, Simulink merges library actors into
the model, determines signal widths, data types, and sample
times, calculates actor parameters, establishes the execution
order of actors, and allocates memory. SSErac, on the other
hand, also converts the model into code for simulation, and
its initialization phase includes model translation process and
code compilation process.

After that, we compared the simulation time differences
across benchmarks for ACCSIM, ACCSIMsa (with state-aware
acceleration), SSE, SSEac, and SSErac. The comparison for
each benchmark was conducted using the same test cases,
which are extracted from the input sequences of the benchmark
in real industrial scenarios. To meet the industrial requirements
of long-term execution and stability tests, the simulations were
conducted with a significant step size of 50 million.

Capability of Error Diagnosis. we first manually injected
several errors into each benchmark model. The number and
types of inserted errors are shown in Table III. We then
simulated these benchmarks using ACCSIM, ACCSIMsa and
SSE, recording whether they could detect the errors and the
time differences in detecting the same errors.

Effectiveness of Coverage Collection. Since coverage
collection typically relies on randomly generated test cases,
which does not align with the intended design scenario of the

TABLE III
BENCHMARK MODELS WITH MANUALLY INJECTED ERRORS

Model #Error Error Types
CPUT 2 Overflow, Downcast
CSEV 2 Overflow, Overflow
FMTM 3 Overflow, Array out of bounds, Downcast
LANS 3 Devided by zero, Downcast, Array out of bounds
LEDLC 2 Overflow, Downcast
RAC 2 Downcast, Devided by zero
SPV 2 Overflow, Downcast
TCP 3 Overflow, Array out of bounds, Downcast
TWC 2 Overflow, Devided by zero
UTPC 2 Downcast, Devided by zero
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State-Aware approach, where input variations are minimal, we
conducted the coverage collection experiments just between
ACCSIM and SSE, with the same test cases generated through
a random approach. The evaluation specifically centered on
comparing the coverage achieved by all methodologies within
a consistent simulation time frame. Coverage metrics, includ-
ing actor, condition, decision, and MC/DC, were systemati-
cally recorded at simulation intervals of 5s, 15s, and 60s.

Memory Overhead. In addition to comparing simulation
efficiency and functionality, we also conducted experiments
on memory overhead. Since the memory overhead of SSE
is mixed with the entire MATLAB process, it is difficult to
measure the memory overhead of SSE separately. We com-
pared the memory usage between ACCSIM and ACCSIMsa.
The measurement method involved observing the Windows
Task Manager during the simulation program’s execution and
recording the maximum memory usage for each experiment.

Performance Overhead of Instrumentation. In contrast to
conventional control models, ACCSIM introduces additional
data diagnostic instrumentation in models involving com-
plex numerical computations. This instrumentation adds extra
conditional logic, thereby introducing additional performance
overhead. To assess the additional performance overhead intro-
duced by implementing simulation function instrumentation,
we commented out all instrumented code to obtain the non-
instrumented C++ code. Subsequently, we compiled this code
segment and recorded its execution time. Furthermore, we add
four publicly available models (Simpson, ABS, Filter high,
Filter low) to evaluate the performance overhead for pure
computational models.

B. Evaluation on Simulation Time.

The results presented in Table IV indicate that the average
time consumption of initialization process for ACCSIM is only
0.82s, making it 8.7×, 8.8×, 20.5× faster than SSE, SSEac and
SSErac respectively. The translation time ranges from 0.09s for
CSEV to 0.49s for RAC. This suggests that translation time
tends to increase with the number of actors in a model, as more
components require parsing and processing during this phase.
The compilation time ranges from 0.32s for TWC to 1.02s for
RAC. The compilation time appears to correlate more closely
with the number of subsystems, as ACCSIM generates separate
code files for each subsystem, which increases the workload
during the compilation process.

ACCSIM achieves significant performance improvement on
simulation efficiency as shown in Table V. Compared to SSE,
SSEac and SSErac, ACCSIM displayed an average efficiency
improvement of 215.3×, 76.3× and 19.8×, respectively. Ad-
ditionally, the state-aware acceleration method achieved an
average speedup of 2.8× compared to ACCSIM, resulting in
simulation efficiency improvements of 568.4×, 200.3×, and
49.5× over SSE, SSEac, and SSErac, respectively.

We observe that the acceleration ratios of four models,
namely LANS, LEDLC, SPV, and TCP, are significantly
higher than other models, compared with SSE. By conducting
an in-depth analysis of these model structures, we found that
they contain more computational actors than other models. The
interpretative execution method of SSE requires a substantial

TABLE IV
THE TIME CONSUMPTION OF SIMULATION INITIALIZATION PHASE FOR

ACCSIM AND SSE (UNIT: SECOND)

Model Translate
Time

Compile
Time

Initialzation
Time of ACCSIM

Initialization time of SSE
SSE SSEac SSErac

CPUT 0.19 0.54 0.73 6.66 6.83 16.49
CSEV 0.09 0.42 0.51 9.35 9.11 20.42
FMTM 0.30 0.77 1.07 6.69 6.73 15.71
LANS 0.30 0.73 1.03 8.20 8.45 19.31
LEDLC 0.18 0.60 0.78 5.19 5.31 12.83
RAC 0.49 1.02 1.50 8.45 8.81 19.6
SPV 0.10 0.37 0.47 6.87 6.84 16.09
TCP 0.28 0.78 1.06 6.05 6.05 15.22
TWC 0.12 0.32 0.45 7.81 7.66 18.82
UTPC 0.20 0.45 0.65 6.18 6.44 14.83
Average 0.22 0.60 0.82 7.15 7.22 16.93

TABLE V
COMPARISON OF SIMULATION TIME (UNIT: SECOND)

Model ACCSIM ACCSIMsa SSE SSEac SSErac

CPUT 4.21 1.35 167.67 69.55 37.41
CSEV 0.77 0.58 75.06 43.97 35.58
FMTM 2.42 0.95 70.61 58.31 32.80
LANS 3.61 1.12 1603.21 536.81 99.96
LEDLC 4.31 1.50 1688.20 512.75 48.66
RAC 3.45 1.21 108.99 70.77 48.35
SPV 1.67 0.80 934.88 375.66 34.60
TCP 2.09 1.02 768.05 158.26 46.15
TWC 2.05 0.82 182.27 76.22 41.34
UTPC 10.88 1.98 1120.77 430.06 140.38

amount of time to process computational logic. However,
for code-based simulation methods, including ACCSIM and
SSErac, the code for computational operations benefits from
compiler optimizations and processor features like pipelining
and superscalar architectures, enabling faster simulation. On
the other hand, code generated from control logic actors,
which includes conditional statements, is less amenable to
such optimizations by compilers or processors. Consequently,
higher acceleration ratios are achieved in these models.

While SSEac employs a strategy of compiling models into
MEX files to reduce the interpretive execution overhead, thus
boosting simulation efficiency, it still relies on interpretive
execution for simulations. Consequently, ACCSIM signifi-
cantly outperforms SSEac in terms of simulation efficiency.
As for SSErac, it precompiles the target model and employs
code-based simulation method to accelerate the simulation
efficiency. However, its performance is still constrained by
the need for frequent synchronization and data transfer with
Simulink, which poses a limitation to achieving optimal sim-
ulation efficiency.

Through a comprehensive analysis of the simulation data
from ACCSIMsa, we found that the number of distinct states in
these models is relatively limited, typically ranging from a few
dozen to over 3,000. Furthermore, the execution process is pre-
dominantly concentrated on a small subset of these states. For
example, in the LEDLC model, the entire operation spans 41
states, yet over three-fourths of the execution time is focused
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on just 18 core states. In contrast, we conducted additional
experiments using a set of pure computational models with
very few redundant loops (174 on average) to evaluate the
time overhead of state-aware approach. With the default values
for FIRST_X_STEPS and REDUNDANT_RATE, ACCSIMsa
completed the simulation in 3.01s on average, while ACCSIM
took 2.86s, resulting in an additional time overhead of only
5.2%. This demonstrates that, in scenarios with minimal
redundant step rate, the overhead introduced by ACCSIMsa
can be effectively controlled by our heuristic algorithm.

C. Capability of Error Diagnosis.

Detailed results are presented in Table VI. We observed that
all injected errors can be detected by ACCSIM, ACCSIMsa
and SSE, with ACCSIM detecting the errors on average
236.2× faster than SSE. This indicates that ACCSIM not only
achieves error detection during simulation but also operates
with much higher efficiency compared to SSE. Additionally,
we observed that ACCSIMsa achieves an average speedup of
1.4× compared to ACCSIM in error detection speed.

TABLE VI
COMPARISON OF ERROR DIAGNOSE TIME (UNIT: SECOND)

Model Error Types Discover Time
ACCSIM ACCSIMsa SSE

CPUT
Overflow 2.43 1.09 112.22
Downcast 3.56 2.67 157.36

CSEV
Overflow 0.74 0.35 450.1

Devided by zero 0.91 0.62 482.3

FMTM
Overflow 1.97 1.52 51.03

Array out of bounds 2.02 1.89 60.35
Downcast 2.28 2.01 69.40

LANS
Devided by zero 2.17 1.68 987.39

Downcast 3.11 2.84 1405.35
Array out of bounds 3.52 3.05 1587.52

LEDLC
Overflow 3.02 2.51 1235.68
Downcast 3.93 3.01 1603.27

RAC
Downcast 2.42 1.82 80.38

Devided by zero 2.95 2.15 98.32

SPV
Overflow 1.21 0.83 633.49
Downcast 1.01 0.72 647.89

TCP
Overflow 1.39 0.98 602.80

Array out of bounds 1.68 1.12 617.18
Downcast 1.92 1.19 732.71

TWC
Overflow 1.23 0.82 134.74

Devided by zero 1.46 1.02 142.74

UTPC
Overflow 7.89 4.22 867.28

Devided by zero 8.63 4.96 902.48

Take the CSEV benchmark model as a case study. CSEV
represents an charging system of electric vehicles. It supports
various modes of charging and offers different charging pow-
ers. This system has a data-store memory actor quantity, which
represents global variable in code, to record the quantity of
charged electricity, with the data type being int.

Specifically, two specific errors are intentionally injected in
the CSEV model. The first error is a wrap on overflow in the
quantity variable. This error arises during ongoing simulations,
which represents the electric vehicle’s continuous charging

process. As a result, the value of quantity progressively in-
creases, eventually exceeding the maximum limit of an integer,
thus leading to an overflow. To detect this error, ACCSIM
employs the diagnosis code to monitor the add actor before
quantity, using the following condition: if(input1 > 0
&& input2 > 0 && output < 0).

The second error involves a wrap on overflow in the cal-
culation of charging power. CSEV, depending on the charging
mode, offers varied charging powers. It first retrieves the rated
voltage and current based on the selected charging mode, and
then employs a product actor to determine the charging power.
However, a discrepancy arises as the output data type of this
product actor is short int, differing from the int data type of
voltage and current, resulting in a wrap on overflow error. To
identify this error, ACCSIM employs the sizeof() function
to determine the data sizes of both the inputs and outputs in
the product calculation. A wrap on overflow error is indicated
if these sizes do not align.

The first wrap on overflow is detected by ACCSIM in
just 0.74s of simulation, reducing over 99% of detection
time, compared to 450.14s taken by SSE. This significant
improvement shows the effectiveness of ACCSIM.

D. Effectiveness of Coverage Collection.

Coverage metrics are essential in model-driven develop-
ment, helping developers gain a deeper understanding of the
model’s execution status and validating the comprehensiveness
of tests. Attaining high coverage more quickly further aids
developers in efficiently analyzing the model. Detailed results
are presented in Table VII.

TABLE VII
COVERAGE OF ACCSIM AND SSE

Model Time
(s)

Actor Condition Decision MC/DC
ACCSIM SSE ACCSIM SSE ACCSIM SSE ACCSIM SSE

CPUT
5 32% 9% 50% 13% 53% 14% 33% 7%
15 43% 20% 76% 28% 78% 30% 64% 15%
60 52% 20% 52% 28% 93% 30% 93% 15%

CSEV
5 46% 46% 70% 63% 69% 64% 45% 33%
15 46% 46% 73% 63% 71% 64% 50% 33%
60 46% 46% 73% 66% 71% 67% 50% 38%

FMTM
5 37% 2% 49% 3% 48% 2% 25% 0%
15 45% 10% 60% 10% 57% 10% 31% 2%
60 45% 10% 62% 10% 59% 10% 36% 2%

LANS
5 45% 18% 62% 27% 60% 27% 37% 18%
15 45% 45% 62% 60% 60% 58% 37% 34%
60 45% 45% 65% 60% 62% 58% 42% 34%

LEDLC
5 51% 31% 83% 40% 82% 42% 59% 27%
15 51% 31% 84% 43% 84% 45% 62% 35%
60 51% 31% 85% 43% 85% 46% 64% 39%

RAC
5 43% 2% 59% 3% 55% 2% 32% 0%
15 43% 10% 60% 11% 57% 10% 35% 2%
60 44% 25% 62% 30% 59% 29% 38% 12%

SPV
5 49% 44% 84% 63% 83% 63% 68% 40%
15 49% 44% 84% 73% 83% 72% 68% 56%
60 49% 44% 84% 73% 83% 72% 68% 56%

TCP
5 40% 23% 65% 25% 65% 24% 58% 10%
15 40% 24% 65% 26% 65% 25% 58% 13%
60 40% 37% 65% 58% 65% 58% 58% 50%

TWC
5 38% 21% 59% 36% 55% 32% 41% 16%
15 38% 21% 59% 36% 55% 32% 41% 18%
60 53% 38% 99% 56% 99% 52% 98% 36%

UTPC
5 38% 20% 58% 22% 57% 19% 37% 1%
15 38% 38% 58% 55% 57% 53% 37% 28%
60 38% 38% 61% 57% 59% 55% 43% 34%
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Our experiments indicate that within just 5 seconds, all 4
coverage metrics achieved by ACCSIM surpass 60 seconds of
SSE simulation, for all models apart from the TCP model. As
for TCP, after a very brief 15-second simulation, its coverage
comprehensively surpassed the results obtained through sim-
ulation on SSE. ACCSIM demonstrates significant efficiency
improvement in coverage collection.

E. Memory Overhead.

Based on the experimental results shown in Table VIII, It is
observed that ACCSIMsa incurs significant memory usage that
is approximately 2.95× that of ACCSIM across all benchmark
models. This increase primarily stems from the state-aware
acceleration method requiring additional storage for state
information and transition tables. Furthermore, as the number
of states increases, there is a corresponding rise in memory
consumption observed during the experiments.

TABLE VIII
MEMORY CONSUMPTION OF ACCSIM AND ACCSIMSA (UNIT: MB)

Model ACCSIM ACCSIMsa Ratio
CPUT 605.8 2010.3 3.32×
CSEV 620.2 2037.4 3.29×
FMTM 606.1 1967.3 3.25×
LANS 987.3 2416.8 2.45×
LEDLC 207.7 730.8 3.52×
RAC 987.3 2189.0 2.22×
SPV 446.1 1782.7 3.99×
TCP 415.1 1082.3 2.61×
TWC 813.2 1971.9 2.42×
UTPC 431.7 1039.6 2.41×

In contrast, ACCSIM maintains consistent memory over-
head across multiple experimental runs. Analysis of the simu-
lation code generated by ACCSIM reveals that memory con-
sumption primarily originates from the Actor Info Collection,
which utilizes fixed-length data structures to record component
output values, resulting in predictable memory usage.

Besides, Although ACCSIMsa brings about significant per-
formance improvements, these gains come at the cost of
increased memory consumption. Therefore, when choosing
between ACCSIM and ACCSIMsa, users need to balance
the trade-off between performance enhancement and memory
usage, especially in scenarios involving large and complex
models or systems with memory constraints. This trade-off
underscores the importance of selecting an appropriate sim-
ulation method based on specific hardware environments and
model characteristics.

F. Performance Overhead of Instrumentation.

The experimental results are presented in Table IX. Fol-
lowing the benchmarks, the subsequent entries (Simpson,
ABS, Filter high, Filter low) denote four publicly available
purely computational models. It can be observed that in the
benchmark scenario, instrumentation by ACCSIM incurred an
average overhead of 54.7%, maintaining an average speedup
of 209.3× compared to SSE. However, for the purely compu-
tational models, ACCSIM introduces an average performance
overhead of 279.5% compared to non-instrumented C++ code

TABLE IX
PERFORMANCE OVERHEAD OF SIMULATION FUNCTIONALITY

INSTRUMENTATION (UNIT: SECOND)

Model ACCSIM ACCSIM without
Instrumentation

Overhead of
Instrumentation

Improvement
(vs. SSE)

CPUT 4.21 7.06 -40.4% 39.8×
CSEV 2.03 1.77 14.7% 37.0×
FMTM 2.42 1.47 64.6% 29.1×
LANS 3.61 3.64 -0.8% 444.1×
LEDLC 4.31 2.23 93.3% 391.7×
RAC 3.45 2.63 31.2% 31.6×
SPV 1.67 1.12 49.1% 559.8×
TCP 2.09 0.89 134.8% 368.0×
TWC 2.05 0.70 192.9% 88.7×
UTPC 10.88 8.06 35.0% 103.0×
Simpson 2.86 0.91 214.3% 137.8×
ABS 2.64 0.93 183.9% 73.2×
Filter high 1.66 0.35 374.3% 336.9×
Filter low 1.47 0.33 345.5% 323.6×

(ACCSIM without instrumentation). Nevertheless, it maintains
a substantial acceleration ratio of 217.9× comparing to SSE.

Be aware that there is an anomaly in the instrumentation
overhead for CPUT and LANS as indicated in the table. The
ACCSIM execution time of these two models is unexpectedly
faster compared to the code without instrumentation.To under-
stand this phenomenon, we conducted an analysis based on the
assembly code of corresponding C++ code shown in Figure 9.

1 ...
2 Assignment_init = 0;
3 for (int For_Iterator_Out1 = 0; For_Iterator_Out1 < 16; For_Iterator_Out1++) {
4 ...
5 if (Assignment_init == 0) {
6 Assignment_init = 1;
7 int batchIndex; 
8     for (batchIndex = 0; batchIndex < 16; batchIndex++)
9       Assignment_Outport1[batchIndex] = Data_StoreRead1_Outport1[batchIndex];
10   }
11   Assignment_Outport1[For_Iterator_Out1] = Switch_Outport1;
12 diagnoseCalculator_system_85_Assignment(...);
13 ... 
14 }

1 int main(int argc, char* argv[]) {
2 TestCase_Init(); Model_Init(); State_Init(); 
3 // Simulation Loop of model
4 for(int step = 0; step < TOTAL_STEP; step++) {
5 int Inport_A = takeTestCase(); int Inport_B = takeTestCase();
6 int Outport;
7 if(MatchSkip(Inport_A, Inport_B, &GlobalVariables)) {
8 SkipIteration(&Outport, &GlobalVariables); }
9 else {
10 Model_Exe(Inport_A, Inport_B, &Outport);
11 RecordNewExe(Inport_A, Inport_B, &Outport, &GlobalVariables); }
12 }
13 outputResult();
14 }

1 Code of main function

Fig. 9. A part of simulation code which CPUT and LANS share.

In this code, line 12 represents instrumentation code for
bounds checking to detect array out-of-bounds access. In
our experiments, when we commented out this line, the
execution time was slower than when it was retained. Upon
analyzing the assembly code, we observed that without the
instrumentation code (commenting out line 12), the compiler
translated the code from lines 5 to 10 into repeated conditional
move instructions (cmove). Essentially, it integrated the if
statement from line 5 into the assignment statement at line
9 and performed loop unrolling 16 times. This resulted in the
execution of lines 6 to 9, originally meant to be executed once,
being repeated 16 times. However, with the insertion of line
12, the aforementioned code was not translated into cmove
instructions by the compiler. Instead, it was translated into
normal conditional jump instructions. As modern processors
often have branch prediction capabilities, the code using
conditional jump instructions is significantly faster compared
to the repetitive cmove instructions.

VI. DISCUSSION

Threats to validity. At present, ACCSIM mainly supports
code-based simulation for discrete models, but a key limitation
of ACCSIM is its current lack of capability in supporting
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continuous models. In contrast to discrete models, which
experience changes at specific intervals, continuous models are
fundamental in embedded systems for their tight interaction
with the environment in terms of sensing/actuation and com-
munication [30]–[32]. Expanding ACCSIM to encompass both
discrete and continuous models would significantly enhance its
versatility and utility. To enhance the simulation of continuous
models through code-based approaches, ACCSIM could either
transform analog descriptions into C++-based languages [32]
or incorporate numerical solvers such as the Adams solver
[33] to efficiently address the differential equations inherent
in continuous models.

Extensibility of ACCSIM. ACCSIM currently focuses on
accelerating the simulation process of Simulink models. Gen-
erally, there are other well-known model-driven tools, also
widely used in embedded software development, such as
Ptolemy-II, SCADE, and Tsmart [5], [8], [34]. To support
code-based simulation for these tools, ACCSIM must be
capable of parsing their unique model representations while
generating the corresponding code. One possible strategy is
to build a well-structured intermediate representation (IR)
that ensures compatibility with various model-driven design
tools [24], [35]. Additionally, to further enhance simulation
efficiency, ACCSIM could explore leveraging optimization
techniques used by other code generators [36], [37].

Limitations of ACCSIMsa. As previously described, when
the number of combinations of values for global variables
and parameters in the model is limited, and the number
of combinations of input parameters is also not large, the
number of internal states in the model can be small, leading
to a majority of the simulation steps involving redundant
computations. By using state-Aware approach to avoid these
redundant computations, simulation efficiency can be signifi-
cantly enhanced without any loss of simulation functionality.

However, when the number of model states or the number
of combinations of input parameter values is large, the hash
table required for implementing the State-Aware function
will consume a considerable amount of memory. In such
cases, the proportion of redundant computation steps decreases
significantly, and the time cost associated with determining
whether a computation is redundant can offset the performance
benefits gained from avoiding redundant computations. This
results in a reduced increase in overall simulation efficiency
and, in some cases, may even lead to a decrease in simulation
efficiency. Consequently, the State-Aware approach is mainly
suitable for industrial models with a relatively small number
of states and input parameter combinations. In other scenarios,
the overhead introduced can be effectively controlled by our
heuristic algorithm. Furthermore, the State-Aware approach
can be manually disabled as an optional feature.

VII. RELATED WORKS

Model-driven design and Simulink. Model-driven design is
a software development method that has been widely used in
safety-critical embedded scenarios [38], [39]. It emphasizes
the use of high-level modeling and simulation to understand,

visualize, and analyze the behavior of complex systems be-
fore implementation. Simulink, developed by MathWorks, is
widely used in engineering, particularly for designing embed-
ded systems and developing control algorithms. It facilitates
embedded software development by supporting simulation,
verification, and code generation. Among them, simulation is
an effective method to verify the correctness of the constructed
models and discover potential errors.
Simulation acceleration. The simulation engine (SSE) is a
core part of Simulink, which enables users to execute and
observe model behavior over time. It evaluates the target sys-
tem step-by-step to detect logical errors, flawed assumptions,
and unintended model behaviors. It is highly accurate and
allows for interactive parameter tuning but can be slower for
complex models. For simulation efficiency, it supports two
kinds of faster modes: Accelerator mode (SSEac) and Rapid
Accelerator mode (SSErac). SSEac accelerates execution by
compiling the model into an intermediate MEX file, whereas
SSErac entirely precompiles the model before simulation,
greatly enhancing processing speed. However, these modes
face limitations: frequent synchronization with Simulink and
data transfer requirements may hinder speed, and their reduced
error detection capabilities could compromise model accuracy
and reliability. For instance, SSErac cannot detect potential
errors like wrap on overflow and downcast errors, and collect
coverage information.

Both [32] and [35] focus on enhancing the simulation speed
of heterogeneous systems by shifting complexity from runtime
to generation time. [32] automates the conversion of analog
models into C++ for easier integration with virtual platforms,
facilitating the joint simulation of digital and analog compo-
nents in smart systems. [35] uses an intermediate representa-
tion, HIF, to unify models from various tools and languages,
generating a homogeneous C++ event-driven simulator for the
initial heterogeneous models.

The main approach of [32] and [35] to enhance simulation
speed is to reduce the details of each model that must be
simulated to the minimum necessary. In contrast, ACCSIM
accelerates simulation by utilizing binary execution as a
replacement for SSE’s interpretive execution. Furthermore,
ACCSIM focuses on Simulink’s data flow and control flow
models. Meanwhile, [32] and [35] concentrate on the co-
simulation of heterogeneous hardware and software designs
within smart systems.

VIII. CONCLUSION

In this paper, we have presented ACCSIM, a novel ap-
proach to accelerate model simulation through automated code
generation, directly addressing the aforementioned challenges.
To overcome the challenge of identifying essential simulation
data, ACCSIM employs a preprocessing step to extract key
actor information and signal details, efficiently filtering the
data for simulation analysis. In tackling the challenge of ana-
lyzing the acquired data, ACCSIM generates instrumentation
code for simulation functionalities, including error diagnosis
and coverage statistics. To address the challenge of skip-
ping duplicate iterations, ACCSIM incorporates state-aware
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acceleration approach, optimizing the simulation process by
skipping redundant loops and reducing unnecessary computa-
tional overhead. Finally, ACCSIM synthesizes the final code
by integrating instrumentation code with actor code generated
from templates, alongside test case import code. Through
this code-based simulation, ACCSIM rapidly produces results
containing coverage and diagnostic information.

We implemented ACCSIM and evaluated it on several
benchmark Simulink models. The results demonstrate that
compared to SSE, ACCSIM achieves a substantial simulation
accelerating ratio up to 215.3×, significantly reducing the
time required for error diagnosing, as well as remarkable
coverage collection ability. Furthermore, through the state-
aware acceleration method, ACCSIM yielded an additional
2.8× speedup. In the future, we plan to extend ACCSIM’s
capabilities for supporting continuous models and other mod-
eling environments, and expand the application scope of the
state-aware approach.
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